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Abstract—In this paper, we use partial-differential-equation-
based filtering as a preprocessing and post processing strategy for
computer-aided cytology. We wish to accurately extract and clas-
sify the shapes of nuclei from confocal microscopy images, which
is a prerequisite to an accurate quantitative intranuclear (geno-
typic and phenotypic) and internuclear (tissue structure) analysis
of tissue and cultured specimens. First, we study the use of a geom-
etry-driven edge-preserving image smoothing mechanism before
nuclear segmentation. We show how this filter outperforms other
widely-used filters in that it provides higher edge fidelity. Then we
apply the same filter, with a different initial condition, to smooth
nuclear surfaces and obtain sub-pixel accuracy. Finally we use an-
other instance of the geometrical filter to correct for misinterpre-
tations of the nuclear surface by the segmentation algorithm. Our
prefiltering and post filtering nicely complements our initial seg-
mentation strategy, in that it provides substantial and measurable
improvement in the definition of the nuclear surfaces.

Index Terms—Cytology, differential geometry, dynamic sur-
faces, image processing, level sets, Riemannian geometry, seg-
mentation, surface evolution.

I. INTRODUCTION

CYTOLOGY shows that the cells in a tissue become
increasingly heterogeneous in their structural properties

during carcinogenesis, while histology shows increasing disor-
ganization of the cells. Furthermore, whether a precancerous
or cancerous lesion progresses, is stable or enters remission is
likely to depend on the chemical and physical environment of
the cell in the lesion [9], [12], [20] in addition to the internal
properties of the cells. In order to understand these structural
alterations, together with the molecular mechanisms underlying
them, it is necessary to analyze the cells individually and within
their natural tissue context. Since many of the structural and
molecular changes occur within the cell’s nucleus, the ability
to segment the individual nuclei in intact tissue is therefore an
important and basic technical capability.
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To obtain quantitatively accurate measurements at the
individual nucleus level, it is necessary to analyze intact nuclei.
Therefore, thick ( 20 m) sections must be employed, which
requires three-dimensional (3-D) (confocal) microscopic image
acquisition [34] followed by 3-D image analysis. In order to
facilitate the segmentation of nuclei from images, it is usual
to label the specimen with a fluorescent DNA counterstain,
because it produces very high contrast images containing
high intensity nuclear regions versus low intensity nonnuclear
(background) regions. Actual segmentation of nuclei can be
obtained by either interactive or automatic algorithms. Interac-
tive methods, based on drawing around nuclei in sequence [6],
[25] or orthogonal [13] 2-D slices are superior in performance
(defined as the fraction of nuclei correctly segmented) based
on visual judgment of the results compared to automatic algo-
rithms. However, they are slow, tedious, and require intense
human effort, typically taking many minutes per nucleus and
are thus limited in their practical application to situations where
only few nuclei require analysis.

Automatic algorithms [3], [10], [23], on the other hand are
much faster, enabling the analysis of hundreds of nuclei per
study: The performance of the automatic methods is only high
( 90%) for specimens containing isolated nuclei. Moreover,
performance significantly deteriorates for many cancer speci-
mens, because the cells are structurally dominated by their nu-
clei leaving little separating cytoplasm and thus the images show
clustered nuclei.

This is the kind of biological specimen we are interested to
study and therefore the accuracy of the segmentation method
calls for improvement. To this end, the 3-D segmentation ap-
proach in [23] combines the speed of automatic image analysis
algorithms with the performance of interactive algorithms by in-
cluding visual inspection stages in the method. This enables the
correct segmentation of a high proportion of individual nuclei
in intact tissue, while greatly reducing user effort and providing
comparable accuracy to that of manual methods for segmenting
cell nuclei. However, the method still needs improvements by
way of better edge fidelity especially for clusters of highly ir-
regular nuclei and for nuclei with highly uneven DNA staining.

Encouraged by the recent advances [15]–[18], [33], [2], [26],
[29], [19] in partial-differential-equation-based image analysis
tools, in this paper, we extend and apply some of those methods
to confocal microscope image analysis. Specifically, we are
interested in first preprocessing a given 3-D image to reduce
noise by paying close attention to the edge geometry, and then
expressing the nuclear segmentation as the solution of an initial
valued partial differential equation. We show the benefit of
using the geometric method via a detailed comparison to other
methods and tabulating the measurements under a variety of
noise conditions on both synthetic and real confocal images.
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Fig. 1. Flowchart depicting the sequence of steps we undertake.

The theme of this paper is to start with a governing equation
that is expressed via an Euler–Lagrange of a functional and to
exploit some of its many interpretations to perform edge-pre-
serving image denoising and shape extraction in three dimen-
sions. Other tasks to complete the chain include curvature-based
min-flow to rid a given shape of its holes, and to split nuclear
clusters in order to re-classify them [30]. Various forms of our
equation are then implemented using the level set [24] methods
and the efficient narrow-band versions [1], [15] of it. The flow-
chart in Fig. 1 shows the exact sequence of steps we undertake
in order to analyze a 3-D confocal microscope image. In the
present context, we address the first four steps of this flow chart.

The rest of the paper is organized as follows: in Section II
we review some previous work on our automatic segmenta-
tion method. This sets the stage for the work to follow on par-
tial-differential-equation-based methods. In Section III, we in-
troduce the main equation and we outline its relevant features.
In Section IV, we interpret the main equation as an image pro-
cessing algorithm and show its application to confocal micro-
scope image denoising. In this section, we also quantify the ben-
efit of employing the geometric filter for image processing by
comparing its performance with that of median and morpholog-
ical filters. In Section V, we examine the geometric interpreta-
tion of our main model and show that it can be used for shape
refinement and correction.

II. PREVIOUS WORK

A typical image contains a large number of nuclei (upto
1500–2500 separate nuclei). Therefore, any segmentation ap-
proach has to be automatic requiring minimal user intervention.
But, as we pointed out in the introduction, automatic methods

Fig. 2. DaVinci User Interface. (1) Top Left Panel: 3-D graphics window
showing some nuclei; (2) Top Right: Surface rendering options (3) Bottom
Left: Quantitative Object Information; (4) Bottom Right: Object Classification
Panel.

also suffer from lack of accuracy. Therefore, we propose a
hybrid approach that starts with an automatic segmentation
method and improves the result by doing PDE-based post
processing.

In order to make the scheme clear, we follow some of the
work in [23] and briefly summarize the automatic segmentation
method to get a rough estimate of nuclear shapes and the
subsequent steps of cluster division and object classification.
The algorithm works as follows: First, an adaptative, gradient
weighted averaged thresholding is used to extract nuclear
stained DNA volumes from the unstained background. The call
for using an adaptative versus fixed threshold is justified by
the variation in image intensity in the focus axis typical
of confocal imaging of thick sections. This heterogeneity is
due to increasing scattered light, photobleaching and loss of
refractive index coupling between the medium and the rest
of the optical path as we image deeper tissue sections. After
thresholding, the user visualizes and classifies each segmented
volume as being a nucleus, cluster of nuclei or debris, using a
3-D visualization program: DAta VIsualization aNd Computer
Interaction (DaVinci) developed in house. DaVinci (Fig. 2)
provides quantitative information about the rendered object
and a variety of interaction tools (zooming, intersection of
the rendered surface with 2-D slices from the original 3-D
image, rotation, surface opacity control, etc.) to help the user to
classify the object.

Objects classified as clusters are divided into sub-components
using a series of automatic algorithms: First, the vector distance
transform (VDT) of the cluster’s binary mask is calculated and
the peaks of this transform are used as internal markers for in-
dividual nuclei inside the cluster. Next, the inverse of either the
VDT (option 1) or the original grayscale image (option 2) is
used for the flooding process of a watershed algorithm to find
surfaces between nuclei in the cluster. The sub-components re-
sulting from the cluster segmentation are reclassified by the
user. Incorrectly divided individual nuclei can then be rejoined.
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The algorithm was tested on 2500 nuclei from five different
types of samples that covered a range of segmentation difficulty
levels. Specimens of nondensely clustered and approximately
spherical nuclei could be easily segmented (99% of nuclei were
correctly segmented based on visual verification). For speci-
mens where nuclei were more clustered and variable in shape,
performance deteriorated. For normal appearing human breast
tissue it was 90%, but it was lower for cancerous tissue. How-
ever, the point to emphasize about the performance is that while
not all nuclei in a specimen were segmented, the inclusion of the
visual classification step meant that it was known which nuclei
were correctly segmented and which were not.

A. Limitations of the Previous Method

We have identified two main sources of error in our current
segmentation method: 1) In the initial automatic thresholding,
inaccurate surface definition is caused by a low Signal to Noise
Ratio of the acquired image, 2) In the watershed-based cluster
segmentation algorithm, erroneous surface delineation occurs
when there is not enough morphological (option 1) or gradient
(option 2) information in the image to correctly lead the
segmentation procedure. In the following sections, we present
a unified geometric image denoising/enhancing/optimization
scheme that addresses both problems.

III. GEOMETRIC MODEL FORIMAGE ANALYSIS

In this section, we introduce a geometric model; various
forms of this equation are used in this paper in order to
implement our image analysis procedures. The method relies
on estimating the motion of curves and surfaces that move in
the normal direction with a given speed. Given a hypersurface

that is moving under speed , we adopt the level set
equation to represent its motion [24], [31], [32]. In other words,
we embed the hypersurface as the zero level set of a higher
dimensional function , and write the following equation
of motion by following the chain rule:

(1)

with a given initial condition ) . This approach
is an alternative to writing the equations of motion for the pa-
rameterized representation of the curve or the surface [11]. As
pointed out in [24], the level set approach offers several ad-
vantages. First, although the higher dimensional function re-
mains a function, its zero level set can change topology, and
form sharp corners. Second, a discrete grid can be used to-
gether with finite differences to devise a numerical scheme to

approximate the solution. Third, intrinsic geometric quantities
like normal and curvature of the curve can be easily extracted
from the higher dimensional function. Finally, everything ex-
tends directly to moving surfaces in three dimensions.

This model of curve and surface motion has been applied to
the problem of shape modeling in [14], [4], [15], [17]. Imagine
that one is given an image and the problem is to extract boundary
descriptions of all the shapes implicitly present in it. The ap-
proach in [15] is one of using a trial shape that propagates in the
image domain and molds itself into the desired boundary. The
speed function used to control this shape recovery process is a
combination of constant inflationary speed, a geometry depen-
dent speed that regularizes the final result, and an image-depen-
dent speed. Specifically, the equation of motion is given by

(2)

where is a decreasing function of the image gradient and
is the mean curvature. For example, the function

, 0 was used in [15]. In other words, the
function is designed so that its values are closer to zero at
high image gradients, i.e., likely edges. An additional forcing
term can be added to this equation to improve the accuracy in the
presence of large variations in image gradient. This is often real-
ized by advecting the surface along an image dependent vector
field [5], [17]; the force field is synthesized in such a way that it
always points in the edge direction. With this change, our equa-
tion becomes

(3)

In [5], the shape computation has been posed as a weighted area
minimization problem and (3) as a necessary condition to obtain

minimum of the energy , where is the area

element. This equation is then solved with the initial condition
, where is the distance function com-

puted in the domain off the user-defined initial hypersurface.
The equation is approximated with finite differences and solved
using the following iterative scheme; see [24], [32] for details. In
two-dimensions, consider a uniform grid and let be the value
of the function at time and at the point . With
this notation, the update equation is shown in (4) at the bottom
of the page, where is a finite difference operator on, the
superscripts indicate backward, central and forward
differences respectively, and the superscripts denote the
direction of differentiation. Again, the key advantages of our
geometric model over other shape recovery scheme are its topo-

(4)
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logical adaptability, robust numerics, and fast real-time imple-
mentations [18] on dense multidimensional data.

IV. I MAGE DENOISING

In this section, we are interested in denoising or improving
the signal-to-noise ratio (SNR) of a given image. This is an es-
sential step in image analysis specially in high noise situations
that can disrupt the shape information. Image denoising has two
principal requirements. One is to smooth all the homogeneous
regions that contain noise and the other is to retain in an ac-
curate way the location of the boundaries that define the shape
of the represented structures. The application of traditional pre-
processing algorithms (moving average, median and Gaussian
filtering) do reduce the noise superimposed on the image but
do not maintain a good definition of the edges or image fea-
tures. Furthermore, in biomedical imaging, noise is due to dif-
ferent causes, and is difficult to model. In particular, the concen-
tration variation of the fluorescence labeled molecules (in this
case DNA) superimposes a de facto noise level that is difficult
to model.

We now show how we can use (3) to denoise images . The
basic idea is to delete the constant speed term and solve the
equation with the noisy image as the initial condition, namely

(5)

with . So, we are moving the level curves
or the iso-intensity contours/surfaces of a given image in the
normal direction with curvature-dependent speed and attracting
them toward local edges as specified by the edge indicator func-
tion . The first term on the right in the above equation is a
parabolic smoothing term and the second is a hyperbolic term.
The proposed model is a selective smoothing of the 3-D image,
where the edges are preserved as much as possible. The indi-
cator function allows us to decide whether a detail is strong
enough to be retained. In our model,is a smooth nonincreasing
function of the initial image , namely

(6)

where is a Gauss kernel and the symboldenotes convo-
lution.

In particular, 1, 0, and
lim 0. Typical forms of

are

(7)

or

(8)

The smoothing works as follows: if is large,
the flow is slow and the exact location of the edges will be re-
tained. If is small then the flow tends to be fast
thereby increasing the smoothing process. Notice that the fil-
tering model reduces to mean curvature flow when 1.
It is important to note here that thefunction depends on the
initial image and serves as an edge indicator. The reason the

(a) (b)

(c) (d)

Fig. 3. Two–dimensional and 3-D edge-preserving smoothing and edge
sharpening results; (a) 2-D slice of the unfiltered image, and (b) Geometric
image processing with� = 1 and� = 1. (c) Surface rendering representation
of the unfiltered volume, and (d) Geometric image processing with� = 1 and
� = 1.

initial image is convolved with a Gaussian low pass filter is
to eliminate the influence of spurious noise related edges in.
But a robust edge definition is what we are attempting to com-
pute by solving (5). So, the way out of this cyclical dependence
is to make a function of time and to recompute it at every
time step of our iterative solution scheme. Therefore,is a func-
tion of . We start with a crude approximation of the
edge indicator function in (5) and progressively improve it while
solving the equation. As time progresses, the image becomes
smoother and smoother, and the edge indicator functionde-
pends less and less on spurious noise.

On the other hand, if we can fix the size of the minimal
image detail, a static function can be synthesized by simply
smoothing the initial image with a Gaussian smoothing kernal.
We note here that the minimal size of the detail is related to the
size of the Gauss kernel, which acts like a scale parameter. In
fact, the variance of corresponds
to the dimension of the smallest structures that have to be pre-
served. The second (hyperbolic) term in (5) sharpens the edge
information in the image; note that a similar observation was
made in [27].

Now we present some results. Fig. 3(a) is a benign region of
a breast cancer specimen, labeled with a fluorescent stain (pro-
pidium iodide) for identification of the cell nuclei. The lower
bilayer of nuclei are in epithelial cells and are surrounding a
duct. Fig. 3(b) shows the result of solving (5) with the image it-
self as an initial condition; Fig. 3(c)–(d) shows the result of 3-D
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TABLE I
COMPARISONBETWEEN MORPHOLOGICAL, MEDIAN AND THE GEOMETRIC FILTER

edge-preserving smoothing on a portion of the confocal micro-
scope image volume.

A. Noise Reduction: Validation Study

We observe from visual inspection of the results in Fig. 3
that the noise is significantly reduced while the nuclear bound-
aries or the edge information is kept sharp and intact. Since
visual inspection is not known to be reliable, in this section,
we go a step further and attempt to quantify the performance
of our geometric filter. We compare the improvement achieved
by the geometric flow filter with that provided by a median
filter. The comparison is done in the following way: we first seg-
ment a noise-free image and treat that segmentation as our ref-
erence. Every instance of a noise-added image is then denoised
using three filters, morphological (opening and closing opera-
tions with a kernal size 3 3), median and our geometric filter.
The shapes are then segmented from these images and compared
to the reference shape. This is done by identifying every voxel
on the surface of the reference object and calculating its dis-
tance in voxels to the closest voxel on the surface of the object
segmented from noise-added image. The average of this set of
closest distance is calculated to produce numbers that are com-
parable across different noise levels. Several levels of noise has
been added to the test images to show the robustness of the filter.
The noise that is added to every image point is uniformly dis-
tributed; for the noise level , the maximum value of additive
noise is set to% of the maximum image intensity level. Finally,
the figures are tabulated in Table I for all noise levels and all the
test images.

In our experiment, we have used three image types.

1) Synthetic objects (Fig. 4): We first work on an image pop-
ulated with computer-generated objects. The shapes are
generated using the superquadric equation. The equation

implic-
itly defines a superquadric, which represents a family of
shapes that is much more diverse compared to an ellip-
soid due to the addition of “squareness” parameters.

2) Cell-shaped object (Fig. 5): A better understanding of the
effect of the filter can be obtained from objects resem-
bling the shape of real cell nuclei. Since it is impossible
to obtain a measurement of the cell surfaces in real im-
ages (prior to segmentation), we created models of real
images from the object that is a result of segmenting an
image containing DNA counterstained nuclei. The binary

(a)

(b) (c)

(d) (e)

Fig. 4. Three–dimensional numerical phantoms: (a)–(c) Numerical phantoms
with uniform noise distribution (50% of the peak) and the result of the geometric
filtering; (d)–(e) Noisy (100% uniform distributed) and filtered orthogonal slice
from the 3-D phantom. (a) Original, (b) 50% noise added, (c) restored, (d) 100%
noise added, and (e) restored.

segmented image was multiplied by 200 and noise was
added as we did before.
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(a)

(b) (c)

(d) (e)

Fig. 5. Cell shaped object: (a)–(c), Noise corrupted (50% uniform distribution)
and filtered cell shaped objects; (d)–(e), Noisy (100% uniform distribution) and
filtered orthogonal slice from the 3-D volume of cell shaped object. (a) Original,
(b) 50% noise added, (c) restored, (d) 100% noise added, and (e) restored.

3) Confocal images of fluorescent beads (Fig. 6). To intro-
duce the effect of the Optical response of the microscope
in our comparison, we used real confocal images of flu-
orescent microspheres. The images where acquired using
a Zeiss LSM/410 confocal microscope and stored in the
ICS file format before analysis.

The error in the segmentation from a noisy image is calcu-
lated as follows: first we estimate the surface of the object from
noise-free image as the intersection between the original binary
image and a 3-D morphological erosion of them, using a 33

3 kernel. Then the VDT [21] (Vector Distance Transform) of
the noise-free objects is computed; this assigns to all the voxels
in the image a value that is the shortest distance to the surface of

(a)

(b) (c)

(d) (e)

Fig. 6. Fluorescent beads: (a)–(c), Fluorescent beads with 50% of uniform
noise distribution and the result of the geometric filtering; (d)–(e), Noisy (50%
uniform distribution) and filtered orthogonal slice from the 3-D volume of
fluorescent beads. (a) Original, (b) 50% noise added, (c) restored, (d) 100%
noise added, and (e) restored.

the objects. Finally, the product of the VDT with the surface seg-
mented from the noise-added image gives us a new image where
each nonzero voxel value contains the distance from the noisy
surface to the noise-free objects. Fig. 7 provides a graphical ex-
planation of the error computation; the solid line represents (in
two dimensions) the surface of our noise-free segmentation and
the dotted line represents the surface of the test candidate with
a given amount of noise. The numbers on the test surface as
one traverses it are the shortest distance to the noise-free seg-
mentation. The average distance is then calculated by adding
all the distance values and dividing the sum by the surface area
of the reference objects. As depicted in Table I, the error cor-
responding to our geometric filter are significantly lower com-
pared to those that result from applying a morphological or a
median filter. In Fig. 8, we plot the error from the Fluorescent
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Fig. 7. A graphical explanation of the error computation.

Fig. 8. Error comparison on the Fluorescent beads image.

bead image. Note that the geometric filter error is0.5, im-
plying that the residual error is dominated by “voxelization” of
the image and not noise; we address this issue in Section VI.

Next, we do another experiment with sections of real confocal
microscope images; no artificial noise was added to these image
samples. Three different images were used, obtained from spec-
imens consisted on tissue biopsies taken from human or mouse
tissue repositories, namely:

1) Human skin specimens [Fig. 9(a)] were obtained
from the archives of the Dermatopathology Sections
of the Departments of Pathology and Dermatology,
University of California, San Francisco. The specimens
were fixed in 10 paraffin-embedded before receipt. The
tissue blocks were cut into 20-m sections stained with
PI at 0.1 mg mL, and mounted in glycerol.

2) Human breast specimens containing invasive carcinoma
in situ parts [Fig. 9(b)] were obtained from the De-
partment of Pathology, California Pacific Medical Center
(CPMC), San Francisco. They were fixed, embedded and
sectioned as described for the skin specimens.

3) Formalin-fixed, paraffin embedded MCF7 cells (a human
breast cancer cell line) that had been grown in nude mice
as a xenograft [Fig. 9(c)] were provided by Dr. G.
Colbern (Geraldine Brush Cancer Research Institute,
CPMC). The xenografts were cut to 30-m thickness,
stained using YO-PRO-1 (Molecular Probes, Eugene,
OR), and mounted on glycerol.

Specimens were imaged using an MRC-1000 confocal
imaging system (Bio–Rad Microscience Ltd. Helmel Hemp-
stead, U.K.) equipped with a Diaphot 200 microscope (Nikon
Inc., Instrument Group, Garden City, NY) a 60, 1.4 Plan
Apo objective lens (Nikon) and an Argon/Krypton (Ar/Kr)
laser. Specimens & were imaged using a laser scanning
confocal microscope 410 (Carl Zeiss Inc., Thornwood, NY)
equipped with an Axiovert 100 microscope (Zeiss), a63, 1.4
NA plan-Achromat objective lens (Zeiss) and an Ar/Kr laser.

The PI in specimens & was imaged using the 568 nm
laser line and collecting emissions longer than 590 nm. The
YO–PRO–1 in was excited using the 488 nm laser and emis-
sions were detected using a band-pass filter in the range of
515–565 nm. The distance between adjacent 2-D slices was 0.3

m for and 0.5 m for & . Voxel size was 0.18 m in
the lateral direction for and 0.2 m for and . Three im-
ages were acquired, one of each type, with sizes 128128
40 , 128 128 40 and 512 512 40 , and stored
in ICS image format [7] and transferred to a UNIX workstation
for archiving and analysis.

The images are first enhanced by solving (5) with 0.1 and
1.0, and then we computes the SNR. We used the following

formula to compute the SNR: ,
where and are the mean signal, and and are
the standard deviations of the object and the background
respectively. The SNR has been computed in three different
regions for every specimen and therefore the mean SNR has
also been evaluated. The result of this comparison has been
tabulated in Table II. The last column contains the gain in
SNR due to the geometric filtering, computed as the ratio

. The mean gain for the three specimen
is 2.01, sothe filtering doubles the SNR.

V. SEGMENTATION AND SHAPE REFINEMENT

As shown in Fig. 10(a), the resulting surfaces from our auto-
matic segmentation algorithm can be quite coarse with a lot of
“voxelization.” This is due to the fact that a thresholding-based
segmentation is a binary representation of a surface that either
includes or excludes a given point as being in or out of the
surface. This process produces an erroneous representation as
the shape boundaries shown may be a little away from the true
edges. We wish to correct this by refining the shapes using the
geometrical flow introduced in previous sections. As we will
show, the flow-based equation also makes it possible to repre-
sent the final surface with a sub-grid accuracy that is not possible
with a threshold-based segmentation. To this end, let us revisit
(3), from the geometrical point of view of achieving boundary
detection.

Let be a surface and assume that it is a particular level set of
a function . In other words, is a



SARTI et al.: A GEOMETRIC MODEL FOR 3-D CONFOCAL IMAGE ANALYSIS 1607

(a) (b) (c)

Fig. 9. A 2-D slice of each one of three real confocal microscope images that we used in our study; (a) Human skin specimens(S), (b) Human breast specimens
(I), and (c) Formalin-fixed, paraffin embedded MCF7 cells(X).

TABLE II
COMPARISONBETWEEN SNR BEFORE ANDAFTER FILTERING OF 3 SPECIMEN OFTHREE DIMENSIONS CONFOCAL IMAGES

set of points at which the functionis equal to a given constant.
The embedding function can therefore be considered as an
implicit representation of the surface. It is easy to prove that
if a surface evolves according to

(9)

where is the unit inward normal and is a real function, then
the level set function obeys the following evolution rule:

(10)

see [24] and [31] for details.
Our first objective is to produce a smoother representation

of the surface using the above equation. In order to smooth a
surface, we can let the speedbe equal to its mean curvature

. The flow decreases the total curvature and has the property
of “smoothing out” all the high curvature regions on the surface,
i.e., local variations [8]. However, this flow will also destroy
useful surface features if run too long. One of the main issues
concerning this flow is if there is a stopping criterion for an
optimal shape refinement. Several methods have been proposed
in the past, one that adds a term to force the solution to remain
close to the initial data [22], and the authors in [16] have studied
a scale dependent stopping criteria implemented via a min–max
curvature flow. In the present context, the stopping condition is
given by the function. So, the surface moves according to

(11)

Recall that the function is an edge indicator, i.e., a nonin-
creasing function of the image gradient. Since we have already
denoised the input image thereby improving the edge definition,
the function is computed as follows:

(12)

where is the denoised/enhanced image.
Our second objective is to steer the surface closer to the “true”

edges in order to produce a better reconstruction. So, we rewrite
(3) without the constant speed term here

(13)

where is a nonzero constant. The first term smooths the sur-
face while keeping it close to the edges and the second term,

, attracts the surface closer to the edge map. In the ab-
sence of a close enough initial condition, it is difficult to solve
the above equation, 1) because it expresses the necessary con-
dition for a nonconvex minimization problem, and 2) partly be-
cause we do not have the constant speed term [as in (3)] that
ordinarily helps one to navigate closer to the true edges. In the
present context, we do have a good initial condition to solve
(13). The initial condition is given by the signed
distance function computed off of the binarized image obtained
from a rough segmentation. In other words, to obtain an accurate
surface description of nuclei, we first use a quick and automatic
scheme to arrive at a rough surface and then pull it closer to the
true edges by solving (13). As an example, the result of applying
this flow on a coarse binary segmentation is shown in Fig. 10.
Surface rendered in Fig. 10(b) is not only closer to true edges
but also described with sub-voxel accuracy.

A. Shape Refinement

Sometimes, there is substantial surface error due to an incor-
rect interpretation of the nuclear boundary by the watershed al-
gorithm that is used for dividing clusters. In those cases, the
surface of the nucleus occupies part of the background space
between nuclei or even includes part of a neighboring nucleus.
An example of this can be seen in Fig. 11(a) and (c).
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(a) (b)

Fig. 10. Shape refinement; (a) Zero level set of the signed distance function
computed on the rough segmentation of a cluster of cells, and (b) Geometric
segmentation with� = 1.

(a) (b)

(c) (d)

Fig. 11. Two examples of level set-based shape refinement. (a) Incorrectly
segmanted. (b) Corrected. (c) Incorrectly segmented. (d) Corrected.

A combination of two flows derived from the general (3) cor-
rects that error: The first flow produces inward movement fol-
lowing the equation:

(14)

The term forces the front to remain smooth, and accelerates
the front in high curvature parts of the front, generally corre-
sponding to artifacts we want to eliminate. The outcome of this
flow is a simplified, shrunk version of the original object, free
from artifacts.

Then we apply the surface reconstruction flow

(15)

that we already introduced earlier in this section. To prevent dif-
ferent fronts from collapsing into each other and losing their
identity, we move each front independently, assigning them a
trial value. If two regions collide based on the trial function
values, the value of the actual function is changed by consid-
ering the values of other level set functions. Merger can be
avoided by a simple max operator. Further details can be found
in [32]. Fig. 11(b) and (d) show the effect of running the above
combination of flows on surfaces in Fig. 11(a) and (c).

VI. CONCLUSION

In this paper, we have presented a methodology to do var-
ious image analysis tasks that one typically encounters in the
study of confocal microscope images. These tasks range from
low-level feature-preserving noise elimination, nuclei to cell
shape smoothing and reconstruction. In this work, we propose a
unified geometric framework in which all of the aforementioned
image analysis tasks are implemented efficiently as various in-
terpretations of an underlying partial differential equation. We
present results on testing our method on real confocal micro-
scope images.
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